Tuesday, May 12, 2020

What is Blueshift

Astronomy has a number of terms that sound exotic to the non-astronomer. Most people have heard of light-years and parsec as terms of distant measurements. But, other terms are more technical and may sound jargony to people who dont know a lot about astronomy. Two such terms are redshift and blueshift.Theyre used to describe an objects motion toward or away from other objects in space. Redshift indicates that an object is moving away from us. Blueshift is a term that astronomers use to describe an object that is moving toward another object or toward us. Someone will say, That galaxy is blueshifted with respect to the Milky Way, for example. It means that the galaxy is moving toward our point in space. It can also be used to describe the speed the galaxy is taking as it gets closer to ours.   Both redshift and blueshift are determined by studying the spectrum of light radiated from the object. Specifically, fingerprints of elements in the spectrum (which is taken with a spectrograph or a spectrometer), are shifted toward the blue or red depending on the motion of the object. Astronomers use the Doppler effect to measure the frequency of light waves as an object is moving with respect to the observer. The frequency is shorter as it moves toward you, and the object shows a blueshift. If the object is moving away, it shows a redshift. This shows up in spectra of stellar light as a shift in the black lines (called absorption lines) as shown here). Carolyn Collins Petersen How Do Astronomers Determine Blueshift? Blueshift is a direct result of a property of an objects motion called the Doppler effect, though there are other phenomena that can also result in light becoming blueshifted. Heres how it works. Lets take that galaxy as an example again. It is emitting  radiation  in the form of light, x-rays, ultraviolet, infrared, radio, visible light, and so forth. As it approaches an observer in our galaxy, each photon (packet of light)  that it emits appears to be produced closer in time to the previous photon. This is due to the Doppler effect and the galaxys proper motion (its motion through space). The result is that the photon peaks appear to be closer together than they actually are, making the wavelength of light shorter (higher frequency, and therefore higher energy), as determined by the observer. Blueshift is not something that can be seen with the eye. It is a property of how light is affected by an objects motion. Astronomers determine blueshift by measuring tiny shifts in the wavelengths of light from the object. They do this with an instrument that splits the light into its component wavelengths. Normally this is done with a spectrometer or another instrument called a spectrograph. The data they gather are graphed into whats called a spectrum. If the light information tells us that the object is moving toward us, the graph will appear shifted toward the blue end of the electromagnetic spectrum.   Measuring the Blueshifts of Stars By measuring the spectral shifts of stars in the Milky Way, astronomers can plot not just their movements, but also the movement of the galaxy as a whole. Objects that are moving away from us will appear redshifted, while objects approaching will be blueshifted. The same is true for the example galaxy thats coming toward us. Astronomers can determine the rate at which the Andromeda galaxy is coming toward the Milky Way by measuring its blueshift. Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger Is the Universe Blueshifted? The past, present and future state of the universe is a hot topic in astronomy and in science in general. And one of the ways that we study these states is to observe the motion of the astronomical objects around us. Originally, the universe was thought to stop at the edge of our galaxy, the Milky Way. But, in the early  1900s, astronomer  Edwin Hubble  found there were galaxies outside of ours (these had actually been observed previously, but astronomers thought that they were simply a kind of nebula, not entire systems of stars). There are now known to be multiple billions of galaxies across the universe.   This changed our entire understanding of the universe and, shortly after, paved the way for the development of a new theory of the creation and evolution of the universe: the Big Bang Theory. Figuring Out the Motion of the Universe The next step was to determine where we are in the process of universal evolution, and what kind of universe we are living in. The question is really: is the universe expanding? Contracting? Static? To answer that, astronomers measured the spectral shifts of galaxies near and far, a project that continues to be part of astronomy. If the light measurements of the galaxies were blueshifted in general, then this would mean that the universe is contracting and that we could be headed for a big crunch as everything in the cosmos slams back together.   The accelerating, expanding universe, showing the influence of accelerated expansion in the most recent epochs of cosmic history. NASA/WMAP However, it turns out the galaxies are, in general, receding from us and appear redshifted. This means that the universe is expanding. Not only that, but we now know that the universal expansion is accelerating ​and that it accelerated at a different rate in the past. That change in acceleration is driven by a mysterious force known generically as dark energy. We have little understanding of the nature of dark energy, only that it seems to be everywhere in the universe. Key Takeaways The term blueshift refers to the shift in wavelengths of light toward the blue end of the spectrum as an object moves toward us in space.Astronomers use blueshift to understand motions of galaxies toward each other and toward our region of space.Redshift applies to the spectrum of light from galaxies that are moving away from us; that is, their light is shifted toward the red end of the spectrum. Sources Cool Cosmos, coolcosmos.ipac.caltech.edu/cosmic_classroom/cosmic_reference/redshift.html.â€Å"The Discovery of the Expanding Universe.†Ã‚  The Expanding Universe, skyserver.sdss.org/dr1/en/astro/universe/universe.asp.NASA, NASA, imagine.gsfc.nasa.gov/features/yba/M31_velocity/spectrum/doppler_more.html. Edited by Carolyn Collins Petersen.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.